

Imagerie élémentaire par LIBS pour la caractérisation des cristaux

V. Motto-Ros^{1,2}

vincent.motto-ros@univ-lyon1.fr

¹Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, 69622 Villeurbanne, France ²Ablatom SAS, 10 Rue Ada Byron, 69622 Villeurbanne, France

Journées thématiques Défauts dans les cristaux 2 & 3 septembre 2021

Laser-Induced Breakdown Spectroscopy (LIBS) Principe

Une technique attractive pour l'analyse *in situ*

Mars 2021 (NASA)

Plan Imagerie élémentaire par LIBS

3 effets en 1!

3 effets en 1!

Grégoire et al. SAB. (2015)

C2

Evolution temporelle

Cu

Cu

Plan Imagerie élémentaire par LIBS

Imagerie élémentaire à l'ILM À l'origine du projet

Brève chronologie Imagerie LIBS à l'ILM (2012-2014)

Motto-Ros et al., SAB (2013) Motto-Ros et al., APL (2013) L. Sancey *et al.*, Sci. Rep. **4** (2014) L. Sancey, *et al.*, J. Vis. Exp. (2014)

Brève chronologie Imagerie LIBS à l'ILM (2014-2016)

- A. Detappe et al. J. Cont. Rel. (2016)
- Y. Gimmenez *et al.* Sci. Rep. (2016)
- S. Kunjachan *et al.*, Nano letters **15** (2015)
- L. Sancey et al., ACS Nano 9 (2015)
- A. Moussaron et al., Small 9 (2015)

Brève chronologie Imagerie LIBS à l'ILM (2016-2021)

Biologie

Médecine

Géologie

Industrie

F. Trichard *et al.* JAAS (2017)
J. Caceres *et al.* Sci. Rep. (2017)
F. Trichard *et al.* Spectrochim. Act. B (2017)
S. Moncayo *et al.* Spectrochim. Act. B (2017)
L. Bassel *et al.*, Environ. Sci. Pollut. Res. (2016)
G. Alombert-Goget *et al.*, Optical Materials (2016)

Détection et Validation d'applications

ABLATOM

Spin-off de l'Université de Lyon <u>www.ablatom.com</u>

Plan Imagerie élémentaire par LIBS

Imagerie élémentaire par LIBS Principe

Instrumentation Microscope "maison"

Resolution ~ 5 μm

LM

N/002WE EWS00/M

- Step Size 5 100 μm
- Operating speed 100 Hz

Properties

Spectral detection

2x Czerny-Turner & ICCD

Multi-techniques

- Raman Spectroscopy
- Fluorescence
- Optical Imaging

Controls

THORILARS

- Laser Energy
- Laser Focus
- Light collection

Equipements à l'ILM OptoLYSE

Optical analysis platform financed by the CPER2016

Project led by Christophe Dujardin, and implemented by Sylvain Hermelin.

Ablation IR, 100 Hz

Plan Imagerie élémentaire par LIBS

μ-LIBS v.s. macro LIBS Configurations géométriques typiques

Imagerie μ-LIBS En ce qui concerne les performances !?

The accessible resolution (or step size) is ultimately governed by the laser-induced damage (crater size, damage induced by the shock wave, etc.)

Detection Limits

LIBS signal ~ $f \cdot m_{abl}$

Reducing the crater size (i.e. volume) decreases the ablated mass (plasma density), and so the LIBS signal...

\rightarrow Balance between resolution and LoDs

													< 20	opm				
1 H hygrogen 200					Per	iod	ic T	able	;				> 500	ppn	n			² He helium <i>n.c.</i>
3 Li lithium 0.1	4 Be berylium 0.1				Ar LIB	nd es S L (Stima DD (nted opm)				5 B boron 1	6 C carbon 500	7 N nitro 10	gen 000	8 O oxygen 10 000	9 F fluorine 100 000	10 Ne neon <i>n.c.</i>
11 Na sodium 0.7	12 Mg magnesium 0.3											13 Al aluminun 2	14 Si silicon 10	15 P phos	phorous 70	16 S sulphur 100	17 CI cholrine 20 000	18 Ar argon <i>n.c.</i>
19 K potassium 4	20 Ca calcium 0.5	21 Sc scandium 2	22 Ti titanium 5	23 V vanadium 5	24 Cr chromium 4	25 Mn manganese 4	Fe iron 20	27 Co cobalt 5	28 2 Ni nickel 0 12	29 Cu copper 2	30 Zn zinc 5	31 Ga gallium 3	32 Ge german 7	um arse	S nic 8	34 Se selenium 100	35 Br bromine <i>n.c.</i>	36 Kr krypton n.c.
37 Rb rubidium 10	38 Sr strontium 0.8	39 Y yttrium 4	40 Zr zirconium 12	41 Nb niobium 20	42 Mo molybdenum 8	43 TC technetium <i>n.c.</i>	44 Ru ruthenium 12	45 Rh rhodium 10	46 Pd palladium 5	47 Ag silver 2	48 Cd cadmium 5	49 In indium 6	50 Sn tin 20	51 SI antir	nony 1	52 Te tellurium 30	53 iodine <i>n.c.</i>	54 Xe xenon <i>n.c.</i>
55 CS caesium 1 000	56 Ba barium 3	щ	72 Hf hafnium 3	73 Ta tantalum 10	74 W tungsten 90	75 Re rhenium 20	76 OS osmium 21	77 Ir iridum 14	78 Pt platinum 70	79 Au gold 12	80 Hg mercury 150	81 TI thallium 5	B2 Pb lead 8	83 Bibism	uth 1	PO polonium n.c.	85 At thallium <i>n.c.</i>	86 Rn radon <i>n.c.</i>
19 Fr francium <i>n.c.</i>	⁸⁸ Ra radium <i>n.c.</i>	В.	57 La	58 Ce	⁵⁹ Pr	60 Nc	I Pn	n ⁶² Sm	63 Eu	64 Gd		66 D	97 9 F	0	⁶⁸ Re	⁶⁹ Tm	n ⁷⁰ Yb	⁷¹ Lu
* Very dense n.c. not prese	spectral stru ent in the dat	ucture tabase	18 89 AC actiniu	num cerium 500 90 Th thorium	* 200 91 Pa proact	dymium neody 0* 150 92 U inium uraniu	mium prome) n.c 93 Np neptur	titiium samariu 60 94 PU nium plutoniu	m europium 6 95 Am americiu	gadolir 40 96 Cn curium	nium terbiu 40 97 Bk berke	m dysp) 4 98 K C lium calif	orosium ho 0* 99 f E prinum eir	mium 30 S steinium	erbium 20 100 Fm fermium	thulium 20 101 Md mendelet	vium nobeliu	im lutetium 20 103 Lr Iawrenciu

Structure spectrale complexe

Certains éléments peuvent avoir un nombres de raies très importantes donnant lieu a des interférences spectrales

Hétérogénéité des échantillons

Dans le cas des échantillons hétérogènes le traitement des données peut devenir très complexe

Kurucz simulation $T_e = 9000K$, $N_e = 5.10^{17} / cm^3$

Structure spectrale complexe

Certains éléments peuvent avoir un nombres de raies très importantes donnant lieu a des interférences spectrales

Hétérogénéité des échantillons

Dans le cas des échantillons hétérogènes le traitement des données peut devenir très complexe

Structure spectrale complexe

Certains éléments peuvent avoir un nombres de raies très importantes donnant lieu a des interférences spectrales

Hétérogénéité des échantillons

Dans le cas des échantillons hétérogènes le traitement des données peut devenir très complexe

Effets de matrice – dépendance des paramètres du plasma

Kurucz simulation, $N_e = 1.10^{17} / \text{cm}^3$

Gamme dynamique de mesure

L'auto-absorption a pour effet de saturer les hautes concentrations

→ Extension de la gamme dynamique de mesure ~ 4/5 ordres de grandeurs

Gamme dynamique de mesure

L'auto-absorption a pour effet de saturer les hautes concentrations

→ Extension de la gamme dynamique de mesure ~ 4/5 ordres de grandeurs

Imagerie LIBS parmi les techniques élémentaire LIBS v.s. EPMA

Imagerie LIBS Etat des lieux

Performances	Parmi les techniques	Spécificités Conditions ambiantes					
Vitesse: 100 Hz	d'imagerie élémentaire						
Résolution: 10 µm	SEM-EDX Electron Microprobe	Tout-optique Grande surface					
LoDs: 1-10 ppm		Utilisation					
H Set Set Set Set Set Set Set No O Na Ca Ca Co No Ca No Al Si P Si K Mg Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te	He F Ne LA-ICP-MS Synchroton µXRF Br Kr LIBS	B C C C C C C C C C C C C C C C C C C C					
Cs Ba Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po Fr Ra C La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Re Ti Fr Ra C La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Re Ti Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm M	At Rn m Yb Lu d No Lr	Raman LIBS					

Plan Imagerie élémentaire par LIBS

Imagerie LIBS pour les cristaux à l'ILM Collaborateurs

Guillaume Alombert-Goget

Kheirreddine Lebbou

Philippe Veber

Matias Velazquez

Christophe Dujardin

Sylvain Hermelin

Saphirs Al₂O₃

Cristaux Piézoélectrique BaTiO₃

LMO Li₂MoO₄

OptoLySE

G. Alombert-Goget et al. Titanium distribution profiles obtained by luminescence and LIBS measurements on Ti: Al2O3 grown by Czochralski and Kyropoulos techniques, Optical Materials, (2016).

ILM G. Alombert-Goget, H. Li, K. Lebbou RSA le RUBIS

ILM Alombert-Goget, H. Li, K. Lebbou RSA le RUBIS

ILM Alombert-Goget, H. Li, K. Lebbou RSA le RUBIS

* Contamination de surface

200 µm

Seed orientation and pulling rate effects on bubbles and strain distribution on a sapphire crystal grown by the micro-pulling down method, CrystEngComm 21(25), (2019).

R. Bouaita et al.

ILM Alombert-Goget, R. Bouita, K. Lebbou

Exemples de résultats Cristaux piézoélectriques

ILM P. Veber

Lead-free piezoelectric crystals grown by the micro-pulling down technique in the BaTiO3– CaTiO3–BaZrO3 system, CrystEngComm 21, 3844 (2019).

12

13

14

15

Z (mm)

P. Veber et al.

Zr (%)

- 6

5

4

· 3 · 2

Ca (%)

20

15

10

5

27

26

29

Z (mm)

23

24

25

Exemples de résultats Cristaux piézoélectriques

Highly textured lead-free piezoelectric polycrystals grown by the micro-pulling down freezing technique in the BaTiO3-CaTiO3system, CrystEngComm 22 (30) (2020).

P. Veber et al.

Exemples de résultats LMO – préparation de l'expérience

Exemples de résultats LMO – préparation de l'expérience

Exemples de résultats LMO – Résultats

Pour finir Et à propos de la quantification?

- 1) Comme les méthodes « classiques » besoin d'étalons... mais...
- 2) Hypothèse que les données de surface sont représentatives du volume

3) Utilisation d'autres techniques

Plan Imagerie élémentaire par LIBS

Perspectives Utilisation de la chimiométrie

Collaboration L. Duponchel

Perspectives Amélioration de la vitesse d'acquisition

Optical fiber

Coupling

Perspectives Amélioration des limites de détections

Perspectives Configuration LIBS - LIF

MICRO

Conclusion

Des avantages intéressants !

Facilité d'implémentation et d'utilisation, rapidité d'analyse, compatibilité avec la microscopie optique, opération sous atmosphère ambiante, détection des éléments légers, analyse de grandes surfaces, etc...

Pour l'analyse des cristaux...

LIBS collaborations: C. Fabre, M. Baudelet, B. Bousquet, J.O. Caceres, V. Detalle, A. Di-Giacomo, F. Doucet, M. Gaft, J. Hermann

P. Veber , G. Alombert, M. Velasquez, K. Leddoux , G. Panczer, O. Tillement, V. Bonneterre, J. Cauzid, R. Chapoulie, C. P. Lienmann, S. Roux, A.M. Sfarghiu, F. Surma, L. Sorbier, Manuel Munoz, Alexandre Curgerone, etc...

dIAg-EM Spectra simulation

Assuming a uniform plasma in LTE (Local Thermodynamic Equilibrium):

Saha equation: Ionization states

$$\frac{N_{\alpha}^{1}}{N_{\alpha}^{0}} = \frac{2}{Ne} \frac{U_{\alpha}^{1}(T)}{U_{\alpha}^{0}(T)} \left(\frac{mkT}{2\pi\hbar^{2}}\right)^{3/2} \exp\left[-\frac{E_{ion}^{1} - \Delta E}{kT}\right]$$

Spectral radiance (self-absorption)

$$B_{\lambda} = B_{\lambda}^{0} (1 - e^{-\tau(\lambda)})$$

$$\tau(\lambda)$$
 Optical thickness

Simulation of pure elemental emissions for various T and Ne

Parmi le panel des techniques d'imagerie élémentaire LIBS v.s. microscopie électronique

Traitement des données Analyse en composante principale sur matrice « complexe »

Measurement sites