

Caractérisation des macles par diffraction des rayons X

Isabelle Gautier-Luneau

Isabelle.Gautier-Luneau@neel.cnrs.fr

2 & 3 septembre 2021

Défauts dans les cristaux

- Quelques définitions
- Classification des macles
- Etude d'une macle pseudo-mériédrique
 - Apport de la DRX sur poudre
 - Détermination sur cristal
 - Description de la macle
 - Analogies structurales
- Les signes d'une macle!

Isabelle.Gautier-Luneau@neel.cnrs.fr

Monocristal

orientation du réseau est unique en tous points quelque soit la taille du cristal

morphologie typique si croissance sans entraves

constante des angles entre faces identiques Romé de Lisle

pm = 141°47'; pp' = 133°44'; mm=120°

Polycristaux

cristaux accolés (agrégats) enchevêtrement de cristaux

Croissance parallèle: dendrites

Image HRTEM de Au_4Mn

Cristal maclé

Plusieurs individus d'une même espèce cristalline orientés mutuellement suivant une loi géométrique définie On passe d'un individu à l'autre par une opération de symétrie (élément de macle) n'appartenant pas au groupe ponctuel de l'individu.

macle par réflexion par rapport à un plan réticulaire (plan de macle), par rotation autour d'une rangée (axe de macle) ou par inversion (centre de macle)

Différents domaines Observable sous lumière polarisée

Classification des macles

D'après leur genèse:

- macles de croissance, qui se forment pendant la croissance cristalline, soit dans les premières étapes, soit par accolement tardif de cristaux ayant déjà atteint une taille considérable.
- macles de transformation, qui se forment suite a une transition de phase avec abaissement de symétrie. Dans la structure, des domaines de différentes orientations vont se former.
- macles mécaniques, qui se forment suite à une action mécanique, notamment une pression orientée le long d'une direction.

Angles rentrants

Classement morphologique :

Macle par contact ou accolement : surface de séparation des individus est plane ou surface quelconque Macle par pénétration : partageant un volume avec une surface de séparation quelconque

Classification des macles

Classement structurale des macles par Friedel :

relation entre réseau propre à chaque individu et celui commun à l'édifice maclé = 4 types

n = Indice ω = obliquité	n=1	n >1		
$\omega = 0$	macle par mériédrie	macle par mériédrie réticulaire	n et ω: différents types de macles d'autant plus fréquente	
$\omega > 0$	macle par pseudo-mériédrie	macle par pseudo-mériédrie réticulaire	que n, ω petits	
Indice de macle	$e n = \frac{V_{Maillemacle}}{V_{Mailleindividus}}$			

réseaux noir et bleu : 2 individus de la macle; mailles Primitives L'élément de la macle = la ligne rouge. nœuds rouges communs aux 2 individus maille du réseau de la macle = rectangle rouge (maille centrée)

2 nœuds /12 appartenant aux réseau de la macle, soit n =6

Classification des macles

Classement structurale des macles par Friedel :

relation entre réseau propre à chaque individu et celui commun à l'édifice maclé

		n=1	n >1	
	$\omega = 0$	macle par mériédrie	macle par mériédrie réticulaire	n et ω: différents types de macles
	ω > 0	macle par pseudo-mériédrie	macle par pseudo-mériédrie réticulaire	d'autant plus fréquente que n, ω petits
Inc	ndice de macle n = $\frac{V_{Maillemacle}}{V_{Mailleindividus}}$ Obliquité de		 Obliquité de la macle ω = déviation à la p de l'axe/pla À gauche : réseau de l'indiv À droite : réseau du 2nd indi en pointillée intersection des 2 réseaux (transforme le réseau noir e La séparation augmente ave L'obliquité ω est l'angle entre rangée du rése 	perpendicularité exacte an de macle ($\omega \le 3 - 4^{\circ}$) ridu dans son orientation original ividu, orientation du réseau originale (plan de macle) n orange quasi-symétrique ec la distance au plan de macle les 2 rangées bleues : au diculaire au plan de macle

Macle par mériédrie

n=1 Les réseaux de tous les individus coïncident parfaitement dans l'espace direct et réciproque.

Possible seulement dans systèmes quadratique, trigonal, hexagonal et cubique

symétrie du motif (groupe ponctuel) < symétrie de réseau

 $\omega = 0$

impact sur la diffraction:

- superposition parfaite des diagrammes de diffraction des différents individus un seul diagramme apparent

- les macles par mériédrie ne sont pas facilement visibles...

Macle par mériédrie réticulaire

n>1
 le degré de symétrie de la macle est supérieur à celle des individus cristallins la constituant
 ω=0
 la macle est un multiple du réseau des cristaux isolés.

fréquente dans les cristaux de symétrie trigonal, hexagonal et cubique souvent macle par pénétration

Apparition d'une maille multiple hexagonale à partir de mailles élémentaires cubiques.

Macle de la fluorine

Macle par pseudo-mériédrie

 $\omega > 0$

Le réseau commun ne possède pas rigoureusement, mais seulement de manière approchée, la symétrie supérieure à celle des individus homogènes.

pseudo-mériédrie du motif

pseudo-mériédrie réticulaire

Triclinique : avec **2** ds 3 angles proches de **90**° qui imite la classe monoclinique 2/m **Monoclinique :** avec β proche de **90**° qui imite la classe orthorhombique mmm **Monoclinique :** avec $a \sim c \neq b$, $\beta \sim 120°$ qui imite le système trigonal ou hexagonal **Monoclinique :** avec $a \sim c \neq b$, $\beta \sim 90°$ qui imite le système quadratique (4/m)

La réduction de symétrie entre la classe de Laüe simulée et la classe réelle conduit à une possible loi de macle

impact sur la diffraction:

superposition partielle de certaines familles de raies à bas angles et séparation à grands angles

composé	a (Å)	b (Å)	<i>c</i> (Å)	γ(°)	V (ų) / Z	groupe d'espace	méthode de diffraction
a-LilO ₃	5,478	5,478	5,170	120	134,36 / 1	P 6 ₃	monocristal
Zn(IO ₃) ₂	5,469	10,938	5,116	120	265,03 / 2	<i>P</i> 112 ₁	poudre
Mg(IO ₃) ₂	5,478	5,478	5,128	120	133,3 / 1	P6 ₃	poudre
Mg(IO ₃) ₂	10,943	10,943	5,163	120	535,5 / 4	P 6 ₃	poudre
Co(IO ₃) ₂	10,960	10,960	5,077	120	528,2 / 4	<i>P</i> 3	monocristal
Mn(IO ₃) ₂	11,178	11,178	5 <i>,</i> 035	120	544,7 / 4	P3	poudre
α-Cu(IO3)2	5,569	5,111	9,269	β 95,82	262,5 / 2	P2 ₁	monocristal

Etude d'une macle pseudo-mériédrique de iodate de métaux(II) M(IO₃)₂

Données cristallographiques d'études antérieures sur les iodates de métaux (II)

D. Phanon et al. Z. Kristallogr. , 2006, 221, 635-642.

DRX sur cristal de Zn(IO₃)₂

Monoclinique	Hexagonal	Orthorhombique
a = 10.931 Å b = 5.126 Å c = 10.923 Å $\beta = 119.95^{\circ}$ $V = 530.61 \text{ Å}^3$	a = b = 10.930Å c = 5.125 Å γ= 120° V = 530.2 Å ³	a = 18.904 Å b = 5.12Å c = 10.905Å V = 1055.4 Å ³

Relations entre les paramètres de maille : $a \sim c \neq b$, $\beta \sim 120^{\circ}$

Extinctions particulières

hkl h+l = 2n 0kl l = 2n h0l h+l = 2n hk0 h=2n 0k0 k=2n / $ou \ 00l l= 2n$ Axe 2_1 / $ou \ 6_3$ 00l l = 2nh00 h= 2n

B 2 2₁ 2

Pas de solution possible en P6₃ Résolution en P2₁ Atomes affinés en isotrope :

- R1 = 0,14 ; wR2 = 0,31
- problèmes de distances et angles
- facteurs d'agitation thermique très faibles
- pics de densité électronique résiduels : +21,66 e/Å³ ; -21,53 e/Å³

12

DRX sur poudre des iodates de métaux (II)

Indexation possible en hexagonal $P6_3$, trigonal P3 et monoclinique $P2_1$

Système monoclinique ou hexagonal?

Siemens D5000 (top) , D8 (bottom) diffractometers.

Indexation impossible dans les groupes d'espaces P3 et P6₃.

Affinement Full pattern matching

monoclinique P2₁

Hexagonal P6₃

15

Système monoclinique, avec quel volume?

Syst. Monoclinique

a = 10.946(2) Å

b = 5.131(1) Å

c =10.883(1) Å

 $\beta = 119.62(1)^{\circ}$ V = 531.4 Å³

(33.4°, 2.2%) (38.4°, 1.7%) (51.6°, 3.5%)

Indexation des clichés de diffraction sur cristal

maille de volume 266 Å³ - cercles bleus maille de volume double 531 Å³ - cercles roses

Paramètres de maille affinés sur poudre

composé	a (Å)	b (Å)	c (Å)	β (°)	V (ų) / Z
Mg(IO ₃) ₂	10,947	5,135	10,967	120,00	533,9 / 4
$Mn(IO_3)_2$	11,268	5,050	11,261	120,34	553,0 / 4
$Co(IO_3)_2$	10,939	5,086	10,933	119,93	527,1 / 4
β -Ni(IO ₃) ₂	10,807	5,139	10,812	120,06	519,7 / 4
$Zn(IO_3)_2$	10,946	5,131	10,883	119,62	531,4 / 4

Système monoclinique, groupe d'espace P2₁

Les iodates de métaux (II) sont isostructuraux : synthèses de composés bimétalliques de métaux (II) possibles

Résolution en P2₁

pseudo axe 6₃ autour des M 3 I à la cote y et 3 I à la cote y+1/2

pseudo axe 3 autour des I

2 M à la cote y et 1 M à la cote y+1/2 ou inversement

Mn1	0,4906	0,316	0,2454
Mn2	0,0111	0,816	0,2546
11	0,1682	0,7330	0,0684
12	0,3340	0,2300	0,4329
13	0,8361	0,2413	0,4052
14	0,6659	0,7405	0,0967

Macle par pseudo mériédrie "imitant" une symétrie hexagonale.

Loi de macle: axe 3

$$\begin{pmatrix}
\bar{1} & 0 & \bar{1} \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}$$
TWIN -1 0 -1 0 1 0 1 0 0 3
BASE 0.33 0.33

groupe ponctuel de la macle = 6⁽³⁾ *

Atomes lourds (M et I) affinés en anisotrope mais O en isotrope

R1 = 0,031; wR2 = 0,055 pics résiduels +2,93 e/Å³ ; -2,09 e/Å³

* Nespolo, M; Z. Kristallogr. 219 (2004) 57-71.

Données cristallographiques sur cristal

Formule	$Zn(IO_3)_2$	$Mn(IO_3)_2$	$Co(IO_3)_2$	$Mg(IO_3)_2$
<i>a</i> (Å)	10,931(1)	11,247(1)	10,939(1)	10,952(1)
<i>b</i> (Å)	5,126(1)	5,045(1)	5,071(1)	5,117(1)
<i>c</i> (Å)	10,929(1)	11,246(1)	10,936(1)	10,959(1)
$oldsymbol{eta}(^\circ)$	119,95(1)	120,02(1)	119,945(7)	120,01(1)
$V(Å^3)$	530,61(4)	552,51(13)	525,65(12)	531,85(12)
Rint	0,085	0,068	0,13	0,045
R ₁	0,042	0,032	0,0775	0,0355
ωR_2	0,086	0,049	0,1221	0,0623
Goodness of fit S	1,06	1,02	1,074	1,072
Contributions des 3	0,366(1)/0,267(1)/	0,360(1)/0,307(1)/	0,325(3)/0,327(3)/	0,332(3)/0,336(3)/
domaines	0,367(1)	0,333(1)	0,348(3)	0,332(3)
obliquité ω(°)	0,38	0,34	0,07	0,02
Paramètre de Flack	-0,03(6)	0,00(7)	-0,1(2)	-0,03(8)
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}} \text{ (e.Å}^{-3)}$	2,316/-2,904	2,94/-2,125	6,157/-3,955	1,286/-1.251

Description de la macle

Macle par pseudo mériédrie imitant une sym. hexagonale trois individus: 0,360(1)/0,307(1)/0,333(1) opération de macle = axe 3, groupe ponctuel de la macle = $6^{(3)}$

morphologie hexagonale sans coins rentrants

Sous lumière polarisée, les différents domaines ne sont pas observés

jamais totalement éteints

Coordonnées atomiques

Mn1 0,0102 0,8194 0,2547 Mn2 0,4896 0,3183 0,2454

Cas de Co(IO₃)₂ résolu en P3

*P*3 : a = b = 10,9597(1) Å, c = 5,0774(1) Å, $\gamma = 120^{\circ}$ R1= 0,05 *P*2₁ : a = 10,939(1) Å, b = 5,071(1) Å, c = 10,936(1) Å, $\beta = 119,95(1)^{\circ}$

Svensson et al. J. Solid State Chem. 36 (1981) 195-204

Cas de Co(IO₃)₂ résolu en P3

Etude de la solution solide $Mn_{1-x}Zn_x(IO_3)_2$

Solution solide dans P2₁ sur l'ensemble du domaine de composition

Analogie structurale avec α -LiIO3

 $M(IO_3)_2$: monoclinique, $P2_1$, V = 530 Å³, $M(IO_3)_3$ hexagonal, $P6_3$, V = 390 Å³ α-LiIO₃ hexagonal, $P6_3$, V = 134,5 Å³

Arrangement hexagonal pseudo compact d'iodates où les cations occupent les sites octaédriques avec un taux d'occupation différent (TOh)

Signes d'une macle pseudo-mériédrique!

- Observation des cristaux sous lumière polarisée, présence d'angles rentrants ?

- La symétrie de Laüe ne colle pas à la métrique du réseau

- Rint d'une classe de symétrie de Laüe plus élevée n'est que légèrement plus haut à celui d'une classe de symétrie de Laüe inférieure

- Les conditions d'existences des réflexions ne sont pas consistantes avec un groupe d'espace
- La valeur |E²-1| sur la statistique des réflexions est diminuée centrosymétrique ~ 0.8, non centrosymétrique ~ 0.6
- La structure ne peut être résolue
- La fonction de Patterson est physiquement impossible
- -Modèle approché de la structure; valeurs de distances et angles aberrantes
- Facteurs d'agitations thermiques sont faibles ou « non-positive »
- Densité électronique résiduelle élevée

Bibliographie

Friedel, G., Leçons de cristallographie, Ed. Berger-Levrault Nancy, Paris, Strasbourg, (1926)

M. Van Merssche, J. Feneau- Dupont « Introduction à la cristallographie et à la chimie structurale » (Ed. Peeters)

Parsons; Introduction to twinning Acta Cryst. (2003). D59, 1995-2003

Nespolo, M.; Ferraris, G; Z. Kristallogr. 218 (2003) 178-181.

Copper, R. et al ;. J. Appl. Cryst. 35 (2002) 168-174.

Nespolo, M; Twin point group and thepolychromatic symmetry of Twin, Z. Kristallogr. 219 (2004) 57-71.

Herbst-Irmer, R.; Sheldrick, G. M; Acta Cryst. B54 (1998) 443-449

Le Page, Y.; J. Appl. Cryst. 35 (2002) 175-181.

G. Friedel; E. Mallard; M.J. Buerger; G. Donnay; J.D.H. Donnay; H. Curien, Y. Le Corre; Choubnikov...

International Table for Crystallography; Volume A, Volume D

Abreal A. http://toutsurlesgrenats.free.fr/fichierspdf/lesmacles.pdf

Nespolo, M. http://www.crystallography.fr/mathcryst/twins.htm